Skip to content

MLP Draft Models

The following code configures vLLM to use speculative decoding where proposals are generated by draft models that condition draft predictions on both context vectors and sampled tokens. For more information see The Hitchhiker's Guide to Speculative Decoding and IBM Research's Technical Report.

MLP Drafter Example

from vllm import LLM, SamplingParams

prompts = ["The future of AI is"]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(
    model="meta-llama/Meta-Llama-3.1-70B-Instruct",
    tensor_parallel_size=4,
    speculative_config={
        "model": "ibm-ai-platform/llama3-70b-accelerator",
        "draft_tensor_parallel_size": 1,
        "method": "mlp_speculator",
    },
)
outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Pre-Trained MLP Drafter Models

A variety of speculative models of this type are available on HF hub: